
CS267 L20 Dense Linear Algebra II.1 Demmel Sp 1999

CS 267 Applications of Parallel Computers

Lecture 18:

Dense Linear Algebra - II

James Demmel

http://www.nersc.gov/~dhbailey/cs267/Lectures/

Lect_18_2000.ppt

CS267 L20 Dense Linear Algebra II.2 Demmel Sp 1999

Review of last lecture and Outline

° Motivation for Dense Linear Algebra (Lectures 10-11)
• Ax=b: Computational Electromagnetics

• Ax = λλλλx: Quantum Chemistry

° Review Gaussian Elimination (GE) for solving Ax=b

° Optimizing GE for caches on sequential machines
• using matrix-matrix multiplication (BLAS)

• Other BLAS3 important too

° LAPACK library overview and performance

° Data layouts on parallel machines

° Review GE and Data layouts

° Parallel matrix-matrix multiplication

° Parallel Gaussian Elimination

° ScaLAPACK library overview

° Open Problems

CS267 L20 Dense Linear Algebra II.3 Demmel Sp 1999

BLAS2 version of Gaussian Elimination with Partial Pivoting (GEPP)

for i = 1 to n-1
 find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|
 … i.e. largest entry in rest of column i
 if |A(k,i)| = 0
 exit with a warning that A is singular, or nearly so
 elseif k != i
 swap rows i and k of A
 end if
 A(i+1:n,i) = A(i+1:n,i) / A(i,i)
 … each quotient lies in [-1,1]
 … BLAS 1
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)
 … BLAS 2, most work in this line

CS267 L20 Dense Linear Algebra II.4 Demmel Sp 1999

BLAS 3 (Blocked) GEPP, using Delayed Updates

for ib = 1 to n-1 step b … Process matrix b columns at a time
 end = ib + b-1 … Point to end of block of b columns
 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’
 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)
 - A(end+1:n , ib:end) * A(ib:end , end+1:n)
 … apply delayed updates with single matrix-multiply
 … with inner dimension b

BLAS 3

CS267 L20 Dense Linear Algebra II.5 Demmel Sp 1999

Parallelizing Gaussian Elimination

° Recall parallelization steps from Lecture 3
• Decomposition: identify enough parallel work, but not too much

• Assignment: load balance work among threads

• Orchestrate: communication and synchronization

• Mapping: which processors execute which threads

° Decomposition
• In BLAS 2 algorithm nearly each flop in inner loop can be done in

parallel, so with n2 processors, need 3n parallel steps

• This is too fine-grained, prefer calls to local matmuls instead

• Need to discuss parallel matrix multiplication

° Assignment
• Which processors are responsible for which submatrices?

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)
 - A(i+1:n , i) * A(i , i+1:n)

CS267 L20 Dense Linear Algebra II.6 Demmel Sp 1999

Different Data Layouts for Parallel GE (on 4 procs)

 The winner!

Bad load balance:
P0 idle after first
n/4 steps

Load balanced, but can’t easily
use BLAS2 or BLAS3

Can trade load balance
and BLAS2/3
performance by
choosing b, but
factorization of block
column is a bottleneck

Complicated addressing

CS267 L20 Dense Linear Algebra II.7 Demmel Sp 1999

How to proceed:

° Consider basic parallel matrix multiplication
algorithms on simple layouts

• Performance modeling to choose best one

- Time (message) = latency + #words * time-per-word

- = αααα + n*ββββ

° Briefly discuss block-cyclic layout

° PBLAS = Parallel BLAS

CS267 L20 Dense Linear Algebra II.8 Demmel Sp 1999

Parallel Matrix Multiply

° Computing C=C+A*B

° Using basic algorithm: 2*n3 Flops

° Variables are:
• Data layout

• Topology of machine

• Scheduling communication

° Use of performance models for algorithm design

CS267 L20 Dense Linear Algebra II.9 Demmel Sp 1999

1D Layout

° Assume matrices are n x n and n is divisible by p

° A(i) refers to the n by n/p block column that
processor i owns (similiarly for B(i) and C(i))

° B(i,j) is the n/p by n/p sublock of B(i)
• in rows j*n/p through (j+1)*n/p

° Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + ΣΣΣΣ A(j)*B(j,i)

p0 p1 p2 p3 p5p4 p6 p7

j

CS267 L20 Dense Linear Algebra II.10 Demmel Sp 1999

Matrix Multiply: 1D Layout on Bus or Ring

° Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + ΣΣΣΣ A(j)*B(j,i)

° First consider a bus-connected machine without
broadcast: only one pair of processors can
communicate at a time (ethernet)

° Second consider a machine with processors on a
ring: all processors may communicate with nearest
neighbors simultaneously

j

CS267 L20 Dense Linear Algebra II.11 Demmel Sp 1999

Naïve MatMul for 1D layout on Bus without Broadcast

Naïve algorithm:

 C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)

 for i = 0 to p-1

 for j = 0 to p-1 except i

 if (myproc == i) send A(i) to processor j

 if (myproc == j)

 receive A(i) from processor i

 C(myproc) = C(myproc) + A(i)*B(i,myproc)

 barrier

Cost of inner loop:

 computation: 2*n*(n/p)2 = 2*n3/p2

 communication: αααα + ββββ*n2 /p

CS267 L20 Dense Linear Algebra II.12 Demmel Sp 1999

Naïve MatMul (continued)

Cost of inner loop:

 computation: 2*n*(n/p)2 = 2*n3/p2

 communication: αααα + ββββ*n2 /p … approximately

Only 1 pair of processors (i and j) are active on any iteration,

 an of those, only i is doing computation

 => the algorithm is almost entirely serial

Running time: (p*(p-1) + 1)*computation + p*(p-1)*communication

 ~= 2*n3 + p2*αααα + p*n2*ββββ

 this is worse than the serial time and grows with p

CS267 L20 Dense Linear Algebra II.13 Demmel Sp 1999

Better Matmul for 1D layout on a Processor Ring

° Proc i can communicate with Proc(i-1) and Proc(i+1) simultaneously for all i

Copy A(myproc) into Tmp
C(myproc) = C(myproc) + T*B(myproc , myproc)
for j = 1 to p-1
 Send Tmp to processor myproc+1 mod p
 Receive Tmp from processor myproc-1 mod p
 C(myproc) = C(myproc) + Tmp*B(myproc-j mod p , myproc)

° Same idea as for gravity in simple sharks and fish algorithm
° Time of inner loop = 2*(αααα + ββββ*n2/p) + 2*n*(n/p)2

° Total Time = 2*n* (n/p)2 + (p-1) * Time of inner loop
 ~ 2*n3/p + 2*p*αααα + 2*ββββ*n2

° Optimal for 1D layout on Ring or Bus, even with with Broadcast:
 Perfect speedup for arithmetic
 A(myproc) must move to each other processor, costs at least
 (p-1)*cost of sending n*(n/p) words
° Parallel Efficiency = 2*n3 / (p * Total Time) = 1/(1 + αααα * p2/(2*n3) + ββββ * p/(2*n))
 = 1/ (1 + O(p/n))

 Grows to 1 as n/p increases (or αααα and ββββ shrink)

CS267 L20 Dense Linear Algebra II.14 Demmel Sp 1999

MatMul with 2D Layout

° Consider processors in 2D grid (physical or logical)

° Processors can communicate with 4 nearest
neighbors

• Broadcast along rows and columns

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

CS267 L20 Dense Linear Algebra II.15 Demmel Sp 1999

Cannon’s Algorithm

… C(i,j) = C(i,j) + ΣΣΣΣ A(i,k)*B(k,j)

… assume s = sqrt(p) is an integer

 forall i=0 to s-1 … “skew” A

 left-circular-shift row i of A by i

 … so that A(i,j) overwritten by A(i,(j+i)mod s)

 forall i=0 to s-1 … “skew” B

 up-circular-shift B column i of B by i

 … so that B(i,j) overwritten by B((i+j)mod s), j)

 for k=0 to s-1 … sequential

 forall i=0 to s-1 and j=0 to s-1 … all processors in parallel

 C(i,j) = C(i,j) + A(i,j)*B(i,j)

 left-circular-shift each row of A by 1

 up-circular-shift each row of B by 1

k

CS267 L20 Dense Linear Algebra II.16 Demmel Sp 1999

Communication in Cannon

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

CS267 L20 Dense Linear Algebra II.17 Demmel Sp 1999

Cost of Cannon’s Algorithm

 forall i=0 to s-1 … recall s = sqrt(p)

 left-circular-shift row i of A by i … cost = s*(αααα + ββββ*n2/p)

 forall i=0 to s-1

 up-circular-shift B column i of B by i … cost = s*(αααα + ββββ*n2/p)

 for k=0 to s-1

 forall i=0 to s-1 and j=0 to s-1

 C(i,j) = C(i,j) + A(i,j)*B(i,j) … cost = 2*(n/s)3 = 2*n3/p3/2

 left-circular-shift each row of A by 1 … cost = α α α α + ββββ*n2/p

 up-circular-shift each row of B by 1 … cost = αααα + ββββ*n2/p

° Total Time = 2*n3/p + 4* s*αααα + 4*ββββ*n2/s
° Parallel Efficiency = 2*n3 / (p * Total Time)
 = 1/(1 + αααα * 2*(s/n)3 + ββββ * 2*(s/n))
 = 1/(1 + O(sqrt(p)/n))
° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows
° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

CS267 L20 Dense Linear Algebra II.18 Demmel Sp 1999

Drawbacks to Cannon

° Hard to generalize for
• p not a perfect square

• A and B not square

• Dimensions of A, B not perfectly divisible by s=sqrt(p)

• A and B not “aligned” in the way they are stored on processors

• block-cyclic layouts

° Memory hog (extra copies of local matrices)

CS267 L20 Dense Linear Algebra II.19 Demmel Sp 1999

SUMMA = Scalable Universal Matrix Multiply Algorithm

° Slightly less efficient, but simpler and easier to
generalize

° Presentation from van de Geijn and Watts
• www.netlib.org/lapack/lawns/lawn96.ps

• Similar ideas appeared many times

° Used in practice in PBLAS = Parallel BLAS
• www.netlib.org/lapack/lawns/lawn100.ps

CS267 L20 Dense Linear Algebra II.20 Demmel Sp 1999

SUMMA

* =
C(I,J)I

J

A(I,k)

k

k

B(k,J)

° I, J represent all rows, columns owned by a processor
° k is a single row or column (or a block of b rows or columns)
° C(I,J) = C(I,J) + ΣΣΣΣk A(I,k)*B(k,J)
° Assume a pr by pc processor grid (pr = pc = 4 above)

For k=0 to n-1 … or n/b-1 where b is the block size
 … = # cols in A(I,k) and # rows in B(k,J)
 for all I = 1 to pr … in parallel
 owner of A(I,k) broadcasts it to whole processor row
 for all J = 1 to pc … in parallel
 owner of B(k,J) broadcasts it to whole processor column
 Receive A(I,k) into Acol
 Receive B(k,J) into Brow
 C(myproc , myproc) = C(myproc , myproc) + Acol * Brow

CS267 L20 Dense Linear Algebra II.21 Demmel Sp 1999

SUMMA performance

For k=0 to n/b-1
 for all I = 1 to s … s = sqrt(p)
 owner of A(I,k) broadcasts it to whole processor row
 … time = log s *(αααα + ββββ * b*n/s), using a tree
 for all J = 1 to s
 owner of B(k,J) broadcasts it to whole processor column
 … time = log s *(αααα + ββββ * b*n/s), using a tree
 Receive A(I,k) into Acol
 Receive B(k,J) into Brow
 C(myproc , myproc) = C(myproc , myproc) + Acol * Brow
 … time = 2*(n/s)2*b

° Total time = 2*n3/p + αααα * log p * n/b + ββββ * log p * n2 /s
° Parallel Efficiency = 1/(1 + αααα * log p * p / (2*b*n2) + ββββ * log p * s/(2*n))
° ~Same ββββ term as Cannon, except for log p factor
 log p grows slowly so this is ok
° Latency (αααα) term can be larger, depending on b
 When b=1, get αααα * log p * n
 As b grows to n/s, term shrinks to αααα * log p * s (log p times Cannon)
° Temporary storage grows like 2*b*n/s
° Can change b to tradeoff latency cost with memory

CS267 L20 Dense Linear Algebra II.22 Demmel Sp 1999

PDGEMM = PBLAS routine
 for matrix multiply

Observations:
 For fixed N, as P increases
 Mflops increases, but
 less than 100% efficiency
 For fixed P, as N increases,
 Mflops (efficiency) rises

DGEMM = BLAS routine
 for matrix multiply

Maximum speed for PDGEMM
 = # Procs * speed of DGEMM

Observations (same as above):
 Efficiency always at least 48%
 For fixed N, as P increases,
 efficiency drops
 For fixed P, as N increases,
 efficiency increases

CS267 L20 Dense Linear Algebra II.23 Demmel Sp 1999

Summary of Parallel Matrix Multiply Algorithms

° 1D Layout
• Bus without broadcast - slower than serial

• Nearest neighbor communication on a ring (or bus with
broadcast): Efficiency = 1/(1 + O(p/n))

° 2D Layout
• Cannon

- Efficiency = 1/(1+O(p1/2 /n))

- Hard to generalize for general p, n, block cyclic, alignment

• SUMMA

- Efficiency = 1/(1 + O(log p * p / (b*n2) + log p * p1/2 /n))

- Very General

- b small => less memory, lower efficiency

- b large => more memory, high efficiency

• Gustavson et al

- Efficiency = 1/(1 + O(p1/3 /n)) ??

CS267 L20 Dense Linear Algebra II.24 Demmel Sp 1999

Review: BLAS 3 (Blocked) GEPP

for ib = 1 to n-1 step b … Process matrix b columns at a time
 end = ib + b-1 … Point to end of block of b columns
 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’
 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)
 - A(end+1:n , ib:end) * A(ib:end , end+1:n)
 … apply delayed updates with single matrix-multiply
 … with inner dimension b

BLAS 3

CS267 L20 Dense Linear Algebra II.25 Demmel Sp 1999

Review: Row and Column Block Cyclic Layout

processors and matrix blocks
are distributed in a 2d array

pcol-fold parallelism
in any column, and calls to the
BLAS2 and BLAS3 on matrices of
size brow-by-bcol

serial bottleneck is eased

need not be symmetric in rows and
columns

CS267 L20 Dense Linear Algebra II.26 Demmel Sp 1999

Distributed GE with a 2D Block Cyclic Layout

block size b in the algorithm and the block sizes brow
and bcol in the layout satisfy b=brow=bcol.

shaded regions indicate busy processors or
communication performed.

unnecessary to have a barrier between each
step of the algorithm, e.g.. step 9, 10, and 11 can be
pipelined

CS267 L20 Dense Linear Algebra II.27 Demmel Sp 1999

Distributed GE with a 2D Block Cyclic Layout

CS267 L20 Dense Linear Algebra II.28 Demmel Sp 1999

M
a

tr
ix

 m
u

lt
ip

ly
 o

f

 g
re

e
n

 =
 g

re
en

 -
 b

lu
e

*
p

in
k

CS267 L20 Dense Linear Algebra II.29 Demmel Sp 1999

PDGESV = ScaLAPACK
 parallel LU routine

Since it can run no faster than its
 inner loop (PDGEMM), we measure:
Efficiency =
 Speed(PDGESV)/Speed(PDGEMM)

Observations:
 Efficiency well above 50% for large
 enough problems
 For fixed N, as P increases,
 efficiency decreases
 (just as for PDGEMM)
 For fixed P, as N increases
 efficiency increases
 (just as for PDGEMM)
 From bottom table, cost of solving
 Ax=b about half of matrix multiply
 for large enough matrices.
 From the flop counts we would
 expect it to be (2*n3)/(2/3*n3) = 3
 times faster, but communication
 makes it a little slower.

CS267 L20 Dense Linear Algebra II.30 Demmel Sp 1999

CS267 L20 Dense Linear Algebra II.31 Demmel Sp 1999

CS267 L20 Dense Linear Algebra II.32 Demmel Sp 1999

Scales well,
 nearly full machine speed

CS267 L20 Dense Linear Algebra II.33 Demmel Sp 1999

Old version,
pre 1998 Gordon Bell Prize

Still have ideas to accelerate
Project Available!

Old Algorithm,
 plan to abandon

CS267 L20 Dense Linear Algebra II.34 Demmel Sp 1999

Have good ideas to speedup
Project available!

Hardest of all to parallelize
Have alternative, and
 would like to compare
Project available!

CS267 L20 Dense Linear Algebra II.35 Demmel Sp 1999

Out-of-core means
 matrix lives on disk;
 too big for main mem

Much harder to hide
 latency of disk

QR much easier than LU
 because no pivoting
 needed for QR

Moral: use QR to solve Ax=b

Projects available
 (perhaps very hard…)

CS267 L20 Dense Linear Algebra II.36 Demmel Sp 1999

A small software project ...

